Seepage And Groundwater Flow Numerical Analysis By Analogue And Digital Methods Series In Geotechnical Engineering

Groundwater is a vital source of water throughout the world. As the number of groundwater investigations increase, it is important to understand how to develop comprehensive quantified conceptual models and appreciate the basis of analytical solutions or numerical methods of modelling groundwater flow. Groundwater Hydrology: Conceptual and Computational Models describes advances in both conceptual and numerical modelling. It gives insights into the interpretation of field information, the development of conceptual models, the use of computational models based on analytical and numerical techniques, the assessment of the adequacy of models, and the use of computational models for predictive purposes. It focuses on the study of groundwater flow problems and a thorough analysis of real practical field case studies. It is divided into three parts: * Part I deals with the basic principles, including a summary of mathematical descriptions of groundwater flow, recharge estimation using soil moisture balance techniques, and extensive studies of groundwater-surface water interactions. * Part II focuses on the concepts and methods of analysis for radial flow to boreholes including topics such as large diameter wells, multi-layered aquifer systems, aquitard storage and the prediction of long-term yield. * Part III examines regional groundwater flow including situations when vertical flows are important or transmissivities change with saturated depth. Suitable for practising engineers, hydrogeologists, researchers in groundwater and irrigation, mathematical modellers, groundwater scientists, and water resource specialists. Appropriate for upper level undergraduates and MSc students in Departments of Civil Engineering, Environmental Engineering, Earth Science and Physical Geography. It would also be useful for hydrologists, civil engineers, physical geographers, agricultural engineers, consultancy firms involved in water resource projects, and overseas development workers.

"Soil Strength and Slope Stability is the essential text for the critical assessment of natural and man-made slopes. Extensive case studies throughout help illustrate the principles and techniques described, including a new examination of Hurricane Katrina failures, plus examples of soil and slope engineering from around the world. Exteraneous theory has been excluded to place the focus squarely on the practical application of slope design and analysis techniques, including information about standards, regulations, formulas, and the use of software in analysis."--pub. desc.

Dr. Andres Alcolea is employed by Geo-Energie Suisse AG and is the funder and CEO of HydroGeoModels. All other Topic Editors declare no competing interests with regards to the Research Topic subject

The oceans cover 70% of the Earth’s surface, and are critical components of Earth’s climate system. This new edition of Encyclopedia of Ocean Sciences summarizes the breadth of knowledge about them, providing revised, up to date entries as well coverage of new topics in the field. New and expanded sections include microbial ecology, high latitude systems and the cryosphere, climate and climate change, hydrothermal and cold seep systems. The structure of the work provides a modern presentation of the field, reflecting the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief. In this framework maximum attention has been devoted to making this an organic and unified reference. Represents a one-stop, organic information resource on the breadth of ocean science research. Reflects the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief. New and expanded sections include microbial ecology, high latitude systems and climate change. Provides scientifically reliable information at a foundational level, making this work a resource for students as well as active researchers.

Considering how structures interact with soil, and building proper foundations, is vital to ensuring public safety and to the longevity of buildings. Understanding the strength and compressibility of subsurface soil is essential to the foundation engineer. The Foundation Engineering Handbook, Second Edition provides the fundamentals of foundation engineering. Groundwater is an essential and vital water resource for drinking water production, agricultural irrigation, and industrial processes. Having a better understanding of physical and chemical processes in aquifers enables more reliable decisions and reduces investments concerning water management. This Special Issue on “Water Flow, Solute, and Heat Transfer, in Groundwater” of Water focuses on the recent advances in groundwater dynamics, and it includes high-quality papers that cover a wide range of issues on different aspects related to groundwater: protection from contamination, recharge, heat transfer, hydraulic parameters estimation, well hydraulics, microbial community, colloid transport, and mathematical models. This integrative volume aims to transfer knowledge to hydrologists, hydraulic engineers, and water resources planners, who are engaged in the sustainable development of groundwater resources.

Praise for the Second Edition: "This is the book that the dewatering sector really needs – it is reliably based on sound theory and profound understanding of the physical processes, yet is presented in a very accessible and user-friendly manner. It draws on many, many decades of experience, and yet is utterly up to date. . . . It is a one-stop shop for the dewatering practitioner – who can nonetheless rest assured that the theoretical basis of the methods presented is flawless." — Professor Paul L. Younger, FGS, FICE, C.Geol., C.Eng., FREng, University of Glasgow, Scotland, UK "The best reference on this topic available . . . and will prove useful to a wide variety of readers ranging from junior construction engineers or dewatering contractors to theoretical hydrogeologists and environmental managers. It is rare that a book is able to bridge the gap between theoretical design guidance and practical application." — S.N. Sterling, University of Waterloo, Canada The extensively updated Groundwater Lowering in Construction: A Practical Guide to Dewatering, 3rd Edition offers practical advice on all phases of groundwater control systems, from planning and design, through installation and maintenance, and ultimately decommissioning. The expertise provided in this book can help you improve working conditions, increase project viability, save time and reduce excavation costs. Designers and managers of construction and engineering projects are given the tools necessary to effectively control groundwater. The content is divided into three sections – Principles, Design and Construction. The Principles section explains the fundamentals of groundwater flow as it relates to civil engineering excavations. The Design section explores in extensive detail site investigation, permeability assessment methods and groundwater control strategies. Chapters in the Construction section describe dewatering and exclusion techniques, and examine the complete life cycle of a groundwater control scheme, including monitoring, maintenance and decommissioning. This section incorporates eleven case histories from the authors' casebook. The 3rd edition has been greatly revised and updated, and contains more than 200 new illustrations. The new content covers: Permeability of soils and rocks, Groundwater problems for excavations in rock, Groundwater control for tunneling projects, such as shafts and cross passages.
Methods for assessing permeability Decommissioning of dewatering systems Optimisation of groundwater control schemes. The new, expanded content offers valuable direction that can give you a true competitive advantage in the planning and execution of temporary and permanent dewatering works for excavation and tunnelling. Written for practising engineers, geologists and construction managers, as well as postgraduate engineering students, this revamped manual on design and practice presents numerous case studies and extensive references to enhance understanding. Martin Preene is a groundwater consultant, based in the UK. He has more than 30 years’ experience working on dewatering and groundwater control projects worldwide. The late Pat Cashman was the leading British exponent of groundwater control for his generation, championing a practical and straightforward approach for more than forty years.

Gives valuable insight into the status of ground water hydrology in the U.S. Originally published in 1962. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

"This volume covers many of the important advances in the geological sciences from 1963 to 2013. These advances include understanding plate tectonics, exploration of the Moon and Mars, development of new computing and analytical technologies, understanding of the role of microbiology in geologic processes, and many others"--Provided by publisher.

Mathematical models are powerful tools used in the prediction of pollutant movement. This book discusses the Finite Element Method (FEM) and Boundary Element Method (BEM), and takes a look at the advantages of these methods in groundwater hydrology. The combination of the BEM and the random-walk particle tracking method is also presented. The book includes computer programs, source code, and examples developed on the basis of the theoretical backgrounds of these methods. These Visual C++ programs are compatible with the Windows platform.

The finite element method (FEM) is one of those modern numerical methods whose rise and development was incited by the rapid development of computers. This method has found applications in all the technical disciplines as well as in the natural sciences. One of the most effective applications of the finite element method is its use for the solution of groundwater flow problems encountered in the design and maintenance of hydraulic structures and tailing dams, in soil mechanics, hydrology, hydrogeology and engineering geology. The stimuli to write this book came from the results obtained in the solution of practical problems connected both with the construction and maintenance of fill-type dams and tailing dams and the utilization of groundwater in Czechoslovakia, and on the other hand from the experience gained in teaching hydraulic structures theory at the Faculty of Civil Engineering of the Technical University of Prague. All the experience so far obtained shows markedly the advantages of the finite element method and the great possibilities of its further development as well as its considerable demands on the algorithmization, programming and use of computer possibilities. The reader will find an explanation of the fundamentals of the finite element method directed mainly toward isoparametric elements having an exceptional adaptability and numerical reliability. The finite element method application to groundwater flow concerns mainly two-dimensional problems, which occur most frequently in practice. Considerable attention is given to non-linear and non-stationary problems, which are most important in application. A computer program (based on the eight-noded isoparametric elements) is included and fully documented. The book will be useful to civil engineers, hydrogeologists and engineering geologists who need the finite element method as a solution tool for the complex problems encountered in engineering practice.

Considering how structures interact with soil, and building proper foundations, is vital to ensuring public safety and to the longevity of buildings. Understanding the strength and compressibility of subsurface soil is essential to the foundation engineer. The Foundation Engineering Handbook, Second Edition provides the fundamentals of foundation engineering needed by professional engineers and engineering students. It presents both classical and state-of-the-art design and analysis techniques for earthen structures and examines the principles and design methods of foundation engineering needed for design of building foundations, embankments, and earth retaining structures. It covers basic soil mechanics, and soil and groundwater modeling concepts, along with the latest research results. What's New in the Second Edition: Adds alternative analytical techniques to nearly every chapter Supplements existing material with new content Includes additional applications in the state of the art such as unsaturated soil mechanics, analysis of transient flow through soils, deep foundation construction monitoring based on thermal integrity profiling, and updated ground remediation techniques Covers reliability-based design and LRFD (load resistance factor design) concepts not addressed in most foundation engineering texts Provides more than 500 illustrations and over 1,300 equations The text serves as an ideal resource for practicing foundation and geotechnical engineers, as well as a supplemental textbook for both undergraduate and graduate levels.

A thorough, up-to-date guide to groundwater science and technology Our understanding of the occurrence and movement of water under the Earth's surface is constantly advancing, with new models, improved drilling equipment, new research, and refined techniques for managing this vital resource. Responding to these tremendous changes, David Todd and new coauthor Larry Mays equip readers with a thorough and up-to-date grounding in the science and technology of groundwater hydrology. Groundwater Hydrology, Third Edition offers a unified presentation of the field, treating fundamental principles, methods, and problems as a whole. With this new edition, you'll be able to stay current
with recent developments in groundwater hydrology, learn modern modeling methods, and apply what you've learned to realistic situations. "Highlights of the Third Edition" * New example problems and case studies, as well as problem sets at the end of each chapter. * A special focus on modern groundwater modeling methods, including a new chapter on modeling (Chapter 9), which describes the U. S. Geological Survey MODFLOW model. * Over 300 new figures and photos. * Both SI and U.S. customary units in the example problems. * Expanded coverage of groundwater contamination by chemicals. * New references at the end of each chapter, which provide sources for research and graduate study. Student and instructor resources for this text are available on the book's website at www.wiley.com/college/todd.

There is a continued demand for well-trained and competent hydrogeologists, especially in the environmental sector. For decades, Fetter’s Applied Hydrogeology has helped prepare students to excel in careers in hydrogeology or other areas of environmental science and engineering where a strong background in hydrogeology is needed. The text’s longstanding tradition as a vital resource is further enhanced in the fifth edition by Kreamer’s added expertise. Stressing the application of mathematics to problem-solving, example problems throughout the book provide students the opportunity to gain a much deeper understanding of the material. Some important topics include the properties of aquifers, the principles of groundwater flow, water chemistry, water quality and contamination, and groundwater development and management. The addition of new case studies and end-of-chapter problems will strengthen understanding of the occurrence and movement of ground water in a variety of geological settings. Creating numerical groundwater models of field problems requires careful attention to describing the problem domain, selecting boundary conditions, assigning model parameters, and calibrating the model. This unique text describes the science and art of applying numerical models of groundwater flow and advective transport of solutes. Explains how to formulate a conceptual model of a system and how to translate it into a numerical model and includes the application of modeling principles with special attention to the finite difference flow codes PLASM and MODFLOW, and the finite-element code AQUIFEM-1. Covers model calibration, verification, and validation. Discusses pathline analysis for tracking contaminants with reference to newly developed particle tracking codes. Makes extensive use of case studies and problems.

New trends of mineral deposits mining in the world consist of intensifying and concentration of mining operations. This is achieved with the help of new technical equipment that is more reliable, having greater service life and more available power. Consideration is given to quantity reduction of stopes and development workings together with their geometrical dimensions growth; also length increase of longwalls and extraction panels is examined. Innovative technologies helping to increase technical-economic indices, extraction volume, working efficiency and safety rules are presented in the book. Specific attention is given to unmanned mineral extraction technologies development using electro-hydraulic management systems of machinery. Plough systems are examined for coal extraction from thin and very thin seams (ranging from 0.8 to 1.2 m of thickness with gaining of stable daily output equal to 2.5-3 thousand tons). Analytical models describing geomechanical interaction between "massif-support" system elements are presented, finite-element method used for research and simulation of stress-strain state around stopes and development workings at coal, ore and other mines are also given. The borehole underground coal gasification technology is introduced with receiving technical gas for electricity generation, and syngas for usage in the chemical industry. Also research of gas hydrates and development of technologies for their extraction from the Black sea bottom is further scrutinized in this book. This text describes topics discussed at the conference, including: tunnelling and construction in soft ground and rocks; geological investigations; tunnelling machines; planning for underground infrastructure; safety issues and environmental and social aspects of underground development. In this study, The Beach Dewatering System, a relatively recent technology to combat beach erosion, which is proposed as a practical alternative to more traditional shoreline stabilization methods, is investigated and an informative overview on the genesis, development and recent use of this technique is provided. On the basis of the link existing between the elevation of beach groundwater and erosional or accretionary trends at the beach face, a numerical model that simulates groundwater flow in a coastal aquifer under beach drainage is presented. In this model, the seaward boundary of the domain is considered to be tidally fluctuating in a large scale to represent the occurrence of seepage face significantly. The unsteady groundwater flow equation is solved numerically using the method of finite differences. The results clearly showed that the water table being lowered caused the reduction of the seepage face which is the main aim of Beach Dewatering projects. The positional design parameters, i.e., horizontal and vertical location of the drain, are also investigated by utilizing an efficiency index. It is observed that the system efficiency decreased as the drain is shifted landward. The results also indicated that, the efficiency slightly increased with the vertical drain elevation. This book gathers an in-depth collection of 45 selected papers presented at the Global Conference on Global Warming 2014 in Beijing, China, covering a broad variety of topics from the main principles of thermodynamics and their role in design, analysis, and the improvements in performance of energy systems to the potential impact of global warming on human health and wellbeing. Given energy production's role in contributing to global warming and climate change, this work provides solutions to global warming from the point of view of energy. Incorporating multi-disciplinary expertise and approaches, it provides a platform for the analysis of new developments in the area of global warming and climate change, as well as potential energy solutions including renewable energy, energy efficiency, energy storage, hydrogen production, CO2 capture and environmental impact assessment. The research and analysis presented herein will benefit international scientists, researchers, engineers, policymakers and all others with an interest in global warming and its potential solutions. This book provides a comprehensive description of theories and applications of high-solid and multi-phase bioprocess engineering, which is considered as an important way to address the challenges of "high energy consumption, high pollution and high emissions" in bio-industry. It starts from specifying the solid-phase matrix properties that contribute to a series of "solid effects" on bioprocess, including mass transfer restrictions in porous media, water binding effects, rheological changes. Then it proposes the new principles of periodic intensification which combines the normal force and physiologic characteristics of microorganism for the bioprocess optimization and scale-up. Further breakthroughs in key periodic intensification techniques such as periodic peristalsis and gas pressure pulsation are described in detail which
provide an industrialization platform and lay the foundation for high-solid and multi-phase bioprocess engineering. This book offers an excellent reference and guide for scientists and engineers engaged in the research on both the theoretical and practical aspects of high-solid and multi-phase bioprocess.

Copyright: 4cf604d229fe5143e871c9863cfe97d6